direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×D61, C61⋊C23, C122⋊C22, (C2×C122)⋊3C2, SmallGroup(488,13)
Series: Derived ►Chief ►Lower central ►Upper central
C61 — C22×D61 |
Generators and relations for C22×D61
G = < a,b,c,d | a2=b2=c61=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 227)(2 228)(3 229)(4 230)(5 231)(6 232)(7 233)(8 234)(9 235)(10 236)(11 237)(12 238)(13 239)(14 240)(15 241)(16 242)(17 243)(18 244)(19 184)(20 185)(21 186)(22 187)(23 188)(24 189)(25 190)(26 191)(27 192)(28 193)(29 194)(30 195)(31 196)(32 197)(33 198)(34 199)(35 200)(36 201)(37 202)(38 203)(39 204)(40 205)(41 206)(42 207)(43 208)(44 209)(45 210)(46 211)(47 212)(48 213)(49 214)(50 215)(51 216)(52 217)(53 218)(54 219)(55 220)(56 221)(57 222)(58 223)(59 224)(60 225)(61 226)(62 165)(63 166)(64 167)(65 168)(66 169)(67 170)(68 171)(69 172)(70 173)(71 174)(72 175)(73 176)(74 177)(75 178)(76 179)(77 180)(78 181)(79 182)(80 183)(81 123)(82 124)(83 125)(84 126)(85 127)(86 128)(87 129)(88 130)(89 131)(90 132)(91 133)(92 134)(93 135)(94 136)(95 137)(96 138)(97 139)(98 140)(99 141)(100 142)(101 143)(102 144)(103 145)(104 146)(105 147)(106 148)(107 149)(108 150)(109 151)(110 152)(111 153)(112 154)(113 155)(114 156)(115 157)(116 158)(117 159)(118 160)(119 161)(120 162)(121 163)(122 164)
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 97)(10 98)(11 99)(12 100)(13 101)(14 102)(15 103)(16 104)(17 105)(18 106)(19 107)(20 108)(21 109)(22 110)(23 111)(24 112)(25 113)(26 114)(27 115)(28 116)(29 117)(30 118)(31 119)(32 120)(33 121)(34 122)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)(52 79)(53 80)(54 81)(55 82)(56 83)(57 84)(58 85)(59 86)(60 87)(61 88)(123 219)(124 220)(125 221)(126 222)(127 223)(128 224)(129 225)(130 226)(131 227)(132 228)(133 229)(134 230)(135 231)(136 232)(137 233)(138 234)(139 235)(140 236)(141 237)(142 238)(143 239)(144 240)(145 241)(146 242)(147 243)(148 244)(149 184)(150 185)(151 186)(152 187)(153 188)(154 189)(155 190)(156 191)(157 192)(158 193)(159 194)(160 195)(161 196)(162 197)(163 198)(164 199)(165 200)(166 201)(167 202)(168 203)(169 204)(170 205)(171 206)(172 207)(173 208)(174 209)(175 210)(176 211)(177 212)(178 213)(179 214)(180 215)(181 216)(182 217)(183 218)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61)(62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122)(123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183)(184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244)
(1 130)(2 129)(3 128)(4 127)(5 126)(6 125)(7 124)(8 123)(9 183)(10 182)(11 181)(12 180)(13 179)(14 178)(15 177)(16 176)(17 175)(18 174)(19 173)(20 172)(21 171)(22 170)(23 169)(24 168)(25 167)(26 166)(27 165)(28 164)(29 163)(30 162)(31 161)(32 160)(33 159)(34 158)(35 157)(36 156)(37 155)(38 154)(39 153)(40 152)(41 151)(42 150)(43 149)(44 148)(45 147)(46 146)(47 145)(48 144)(49 143)(50 142)(51 141)(52 140)(53 139)(54 138)(55 137)(56 136)(57 135)(58 134)(59 133)(60 132)(61 131)(62 192)(63 191)(64 190)(65 189)(66 188)(67 187)(68 186)(69 185)(70 184)(71 244)(72 243)(73 242)(74 241)(75 240)(76 239)(77 238)(78 237)(79 236)(80 235)(81 234)(82 233)(83 232)(84 231)(85 230)(86 229)(87 228)(88 227)(89 226)(90 225)(91 224)(92 223)(93 222)(94 221)(95 220)(96 219)(97 218)(98 217)(99 216)(100 215)(101 214)(102 213)(103 212)(104 211)(105 210)(106 209)(107 208)(108 207)(109 206)(110 205)(111 204)(112 203)(113 202)(114 201)(115 200)(116 199)(117 198)(118 197)(119 196)(120 195)(121 194)(122 193)
G:=sub<Sym(244)| (1,227)(2,228)(3,229)(4,230)(5,231)(6,232)(7,233)(8,234)(9,235)(10,236)(11,237)(12,238)(13,239)(14,240)(15,241)(16,242)(17,243)(18,244)(19,184)(20,185)(21,186)(22,187)(23,188)(24,189)(25,190)(26,191)(27,192)(28,193)(29,194)(30,195)(31,196)(32,197)(33,198)(34,199)(35,200)(36,201)(37,202)(38,203)(39,204)(40,205)(41,206)(42,207)(43,208)(44,209)(45,210)(46,211)(47,212)(48,213)(49,214)(50,215)(51,216)(52,217)(53,218)(54,219)(55,220)(56,221)(57,222)(58,223)(59,224)(60,225)(61,226)(62,165)(63,166)(64,167)(65,168)(66,169)(67,170)(68,171)(69,172)(70,173)(71,174)(72,175)(73,176)(74,177)(75,178)(76,179)(77,180)(78,181)(79,182)(80,183)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,141)(100,142)(101,143)(102,144)(103,145)(104,146)(105,147)(106,148)(107,149)(108,150)(109,151)(110,152)(111,153)(112,154)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,161)(120,162)(121,163)(122,164), (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,121)(34,122)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(123,219)(124,220)(125,221)(126,222)(127,223)(128,224)(129,225)(130,226)(131,227)(132,228)(133,229)(134,230)(135,231)(136,232)(137,233)(138,234)(139,235)(140,236)(141,237)(142,238)(143,239)(144,240)(145,241)(146,242)(147,243)(148,244)(149,184)(150,185)(151,186)(152,187)(153,188)(154,189)(155,190)(156,191)(157,192)(158,193)(159,194)(160,195)(161,196)(162,197)(163,198)(164,199)(165,200)(166,201)(167,202)(168,203)(169,204)(170,205)(171,206)(172,207)(173,208)(174,209)(175,210)(176,211)(177,212)(178,213)(179,214)(180,215)(181,216)(182,217)(183,218), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61)(62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122)(123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183)(184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244), (1,130)(2,129)(3,128)(4,127)(5,126)(6,125)(7,124)(8,123)(9,183)(10,182)(11,181)(12,180)(13,179)(14,178)(15,177)(16,176)(17,175)(18,174)(19,173)(20,172)(21,171)(22,170)(23,169)(24,168)(25,167)(26,166)(27,165)(28,164)(29,163)(30,162)(31,161)(32,160)(33,159)(34,158)(35,157)(36,156)(37,155)(38,154)(39,153)(40,152)(41,151)(42,150)(43,149)(44,148)(45,147)(46,146)(47,145)(48,144)(49,143)(50,142)(51,141)(52,140)(53,139)(54,138)(55,137)(56,136)(57,135)(58,134)(59,133)(60,132)(61,131)(62,192)(63,191)(64,190)(65,189)(66,188)(67,187)(68,186)(69,185)(70,184)(71,244)(72,243)(73,242)(74,241)(75,240)(76,239)(77,238)(78,237)(79,236)(80,235)(81,234)(82,233)(83,232)(84,231)(85,230)(86,229)(87,228)(88,227)(89,226)(90,225)(91,224)(92,223)(93,222)(94,221)(95,220)(96,219)(97,218)(98,217)(99,216)(100,215)(101,214)(102,213)(103,212)(104,211)(105,210)(106,209)(107,208)(108,207)(109,206)(110,205)(111,204)(112,203)(113,202)(114,201)(115,200)(116,199)(117,198)(118,197)(119,196)(120,195)(121,194)(122,193)>;
G:=Group( (1,227)(2,228)(3,229)(4,230)(5,231)(6,232)(7,233)(8,234)(9,235)(10,236)(11,237)(12,238)(13,239)(14,240)(15,241)(16,242)(17,243)(18,244)(19,184)(20,185)(21,186)(22,187)(23,188)(24,189)(25,190)(26,191)(27,192)(28,193)(29,194)(30,195)(31,196)(32,197)(33,198)(34,199)(35,200)(36,201)(37,202)(38,203)(39,204)(40,205)(41,206)(42,207)(43,208)(44,209)(45,210)(46,211)(47,212)(48,213)(49,214)(50,215)(51,216)(52,217)(53,218)(54,219)(55,220)(56,221)(57,222)(58,223)(59,224)(60,225)(61,226)(62,165)(63,166)(64,167)(65,168)(66,169)(67,170)(68,171)(69,172)(70,173)(71,174)(72,175)(73,176)(74,177)(75,178)(76,179)(77,180)(78,181)(79,182)(80,183)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,141)(100,142)(101,143)(102,144)(103,145)(104,146)(105,147)(106,148)(107,149)(108,150)(109,151)(110,152)(111,153)(112,154)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,161)(120,162)(121,163)(122,164), (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,121)(34,122)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(123,219)(124,220)(125,221)(126,222)(127,223)(128,224)(129,225)(130,226)(131,227)(132,228)(133,229)(134,230)(135,231)(136,232)(137,233)(138,234)(139,235)(140,236)(141,237)(142,238)(143,239)(144,240)(145,241)(146,242)(147,243)(148,244)(149,184)(150,185)(151,186)(152,187)(153,188)(154,189)(155,190)(156,191)(157,192)(158,193)(159,194)(160,195)(161,196)(162,197)(163,198)(164,199)(165,200)(166,201)(167,202)(168,203)(169,204)(170,205)(171,206)(172,207)(173,208)(174,209)(175,210)(176,211)(177,212)(178,213)(179,214)(180,215)(181,216)(182,217)(183,218), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61)(62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122)(123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183)(184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244), (1,130)(2,129)(3,128)(4,127)(5,126)(6,125)(7,124)(8,123)(9,183)(10,182)(11,181)(12,180)(13,179)(14,178)(15,177)(16,176)(17,175)(18,174)(19,173)(20,172)(21,171)(22,170)(23,169)(24,168)(25,167)(26,166)(27,165)(28,164)(29,163)(30,162)(31,161)(32,160)(33,159)(34,158)(35,157)(36,156)(37,155)(38,154)(39,153)(40,152)(41,151)(42,150)(43,149)(44,148)(45,147)(46,146)(47,145)(48,144)(49,143)(50,142)(51,141)(52,140)(53,139)(54,138)(55,137)(56,136)(57,135)(58,134)(59,133)(60,132)(61,131)(62,192)(63,191)(64,190)(65,189)(66,188)(67,187)(68,186)(69,185)(70,184)(71,244)(72,243)(73,242)(74,241)(75,240)(76,239)(77,238)(78,237)(79,236)(80,235)(81,234)(82,233)(83,232)(84,231)(85,230)(86,229)(87,228)(88,227)(89,226)(90,225)(91,224)(92,223)(93,222)(94,221)(95,220)(96,219)(97,218)(98,217)(99,216)(100,215)(101,214)(102,213)(103,212)(104,211)(105,210)(106,209)(107,208)(108,207)(109,206)(110,205)(111,204)(112,203)(113,202)(114,201)(115,200)(116,199)(117,198)(118,197)(119,196)(120,195)(121,194)(122,193) );
G=PermutationGroup([[(1,227),(2,228),(3,229),(4,230),(5,231),(6,232),(7,233),(8,234),(9,235),(10,236),(11,237),(12,238),(13,239),(14,240),(15,241),(16,242),(17,243),(18,244),(19,184),(20,185),(21,186),(22,187),(23,188),(24,189),(25,190),(26,191),(27,192),(28,193),(29,194),(30,195),(31,196),(32,197),(33,198),(34,199),(35,200),(36,201),(37,202),(38,203),(39,204),(40,205),(41,206),(42,207),(43,208),(44,209),(45,210),(46,211),(47,212),(48,213),(49,214),(50,215),(51,216),(52,217),(53,218),(54,219),(55,220),(56,221),(57,222),(58,223),(59,224),(60,225),(61,226),(62,165),(63,166),(64,167),(65,168),(66,169),(67,170),(68,171),(69,172),(70,173),(71,174),(72,175),(73,176),(74,177),(75,178),(76,179),(77,180),(78,181),(79,182),(80,183),(81,123),(82,124),(83,125),(84,126),(85,127),(86,128),(87,129),(88,130),(89,131),(90,132),(91,133),(92,134),(93,135),(94,136),(95,137),(96,138),(97,139),(98,140),(99,141),(100,142),(101,143),(102,144),(103,145),(104,146),(105,147),(106,148),(107,149),(108,150),(109,151),(110,152),(111,153),(112,154),(113,155),(114,156),(115,157),(116,158),(117,159),(118,160),(119,161),(120,162),(121,163),(122,164)], [(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,97),(10,98),(11,99),(12,100),(13,101),(14,102),(15,103),(16,104),(17,105),(18,106),(19,107),(20,108),(21,109),(22,110),(23,111),(24,112),(25,113),(26,114),(27,115),(28,116),(29,117),(30,118),(31,119),(32,120),(33,121),(34,122),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78),(52,79),(53,80),(54,81),(55,82),(56,83),(57,84),(58,85),(59,86),(60,87),(61,88),(123,219),(124,220),(125,221),(126,222),(127,223),(128,224),(129,225),(130,226),(131,227),(132,228),(133,229),(134,230),(135,231),(136,232),(137,233),(138,234),(139,235),(140,236),(141,237),(142,238),(143,239),(144,240),(145,241),(146,242),(147,243),(148,244),(149,184),(150,185),(151,186),(152,187),(153,188),(154,189),(155,190),(156,191),(157,192),(158,193),(159,194),(160,195),(161,196),(162,197),(163,198),(164,199),(165,200),(166,201),(167,202),(168,203),(169,204),(170,205),(171,206),(172,207),(173,208),(174,209),(175,210),(176,211),(177,212),(178,213),(179,214),(180,215),(181,216),(182,217),(183,218)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61),(62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122),(123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183),(184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244)], [(1,130),(2,129),(3,128),(4,127),(5,126),(6,125),(7,124),(8,123),(9,183),(10,182),(11,181),(12,180),(13,179),(14,178),(15,177),(16,176),(17,175),(18,174),(19,173),(20,172),(21,171),(22,170),(23,169),(24,168),(25,167),(26,166),(27,165),(28,164),(29,163),(30,162),(31,161),(32,160),(33,159),(34,158),(35,157),(36,156),(37,155),(38,154),(39,153),(40,152),(41,151),(42,150),(43,149),(44,148),(45,147),(46,146),(47,145),(48,144),(49,143),(50,142),(51,141),(52,140),(53,139),(54,138),(55,137),(56,136),(57,135),(58,134),(59,133),(60,132),(61,131),(62,192),(63,191),(64,190),(65,189),(66,188),(67,187),(68,186),(69,185),(70,184),(71,244),(72,243),(73,242),(74,241),(75,240),(76,239),(77,238),(78,237),(79,236),(80,235),(81,234),(82,233),(83,232),(84,231),(85,230),(86,229),(87,228),(88,227),(89,226),(90,225),(91,224),(92,223),(93,222),(94,221),(95,220),(96,219),(97,218),(98,217),(99,216),(100,215),(101,214),(102,213),(103,212),(104,211),(105,210),(106,209),(107,208),(108,207),(109,206),(110,205),(111,204),(112,203),(113,202),(114,201),(115,200),(116,199),(117,198),(118,197),(119,196),(120,195),(121,194),(122,193)]])
128 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 61A | ··· | 61AD | 122A | ··· | 122CL |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 61 | ··· | 61 | 122 | ··· | 122 |
size | 1 | 1 | 1 | 1 | 61 | 61 | 61 | 61 | 2 | ··· | 2 | 2 | ··· | 2 |
128 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | D61 | D122 |
kernel | C22×D61 | D122 | C2×C122 | C22 | C2 |
# reps | 1 | 6 | 1 | 30 | 90 |
Matrix representation of C22×D61 ►in GL3(𝔽367) generated by
366 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
366 | 0 | 0 |
0 | 366 | 0 |
0 | 0 | 366 |
1 | 0 | 0 |
0 | 317 | 1 |
0 | 115 | 350 |
366 | 0 | 0 |
0 | 277 | 365 |
0 | 196 | 90 |
G:=sub<GL(3,GF(367))| [366,0,0,0,1,0,0,0,1],[366,0,0,0,366,0,0,0,366],[1,0,0,0,317,115,0,1,350],[366,0,0,0,277,196,0,365,90] >;
C22×D61 in GAP, Magma, Sage, TeX
C_2^2\times D_{61}
% in TeX
G:=Group("C2^2xD61");
// GroupNames label
G:=SmallGroup(488,13);
// by ID
G=gap.SmallGroup(488,13);
# by ID
G:=PCGroup([4,-2,-2,-2,-61,7683]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^61=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export